Euler ’ s superequations 1

نویسندگان

  • Valentin Gabriel Cristea
  • V. G. Cristea
چکیده

Let L define a regular problem in the calculus of variations on a supermanifold. A necessary condition for a piecewise superdifferentiable supercurve C in the sense of Rogers be a week local minimum for L is that C be superdifferentiable and C̃ be an integral supercurve of X , where X is defined by X dσ = 0, ω = d L , 〈X, dt〉 = 1, the superform σ = L∗ω is defined on T (M) × BL and L is an immersion of T (M) × BL into T ∗(M) × BL , (a Legendre supertransformation).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Euler Product of Some Zeta Functions

It is well-known that the Euler product for the Riemann zeta function ζ(s) is still valid for !(s) = 1 and s "= 1. In this paper, we extend this result to zeta functions of number fields. In particular, the Dedekind zeta function ζk(s) for any algebraic number field k and the Hecke zeta function ζ(s,χ) for the rational number field are shown to have the Euler product on the line !(s) = 1 except...

متن کامل

A Geometric Parametrization for the Virtual Euler Characteristics of the Moduli Spaces of Real and Complex Algebraic Curves

We determine an expression ξs g(γ) for the virtual Euler characteristics of the moduli spaces of s-pointed real (γ = 1/2) and complex (γ = 1) algebraic curves. In particular, for the space of real curves of genus g with a fixed point free involution, we find that the Euler characteristic is (−2)s−1(1−2g−1)(g+s−2)!Bg/g! where Bg is the gth Bernoulli number. This complements the result of Harer a...

متن کامل

Structure of Rational Open Surfaces with Non{positive Euler Characteristic

We study mainly connected conngurations of irreducible curves r i=1 C i on a nonsingular rational projective complex surface X such that the Euler characteristic (X n r i=1 C i) 0, hereby continuing a former conjecture of the author and work of Gurjar and Parameswaran. Roughly we show that any such connguration can be extended to another connguration s i=1 C i (r s) with still (X n s i=1 C i) 0...

متن کامل

Explicit evaluation of Euler sums

In response to a letter from Goldbach, Euler considered sums of the form where s and t are positive integers. As Euler discovered by a process of extrapolation (from s + t 13), h (s; t) can be evaluated in terms of Riemann-functions when s + t is odd. We provide a rigorous proof of Euler's discovery and then give analogous evaluations with proofs for corresponding alternating sums. Relatedly we...

متن کامل

A pr 2 00 5 CONVERSE THEOREMS ASSUMING A PARTIAL EULER PRODUCT

Abstract. Associated to a newform f(z) is a Dirichlet series Lf (s) with functional equation and Euler product. Hecke showed that if the Dirichlet series F (s) has a functional equation of a particular form, then F (s) = Lf (s) for some holomorphic newform f(z) on Γ(1). Weil extended this result to Γ0(N) under an assumption on the twists of F (s) by Dirichlet characters. Conrey and Farmer exten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002